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The development is described of a balanced field length trajectory optimization approach for a multi-engine
helicopter sustaining a single engine failure. Whereas most studies typically focus on a single flight phase, this study
is based on a multiphase formulation,in which the rejected takeoff and continued takeoff trajectories are optimized
simultaneously,subject to a field length balancing constraint. The advantage of this approach s that, for any given
engine failure time, it allows the flight phase where all engines are still operating to be optimized in such a way
that the solution represents the best possible compromise between the conflicting requirements set by the rejected
takeoff and continued takeoff flight phases. In addition to balanced field length calculations, the optimization of
unbalanced rejected takeoff has been addressed. Combined considerations of balanced and unbalanced rejected
takeoff give insight in the choice of the critical decision point. The mostimportant result of the overall optimization
process is the optimal all-engines-operating takeoff flight path up to the critical decision point. The usefulness of
the proposed multiphase optimization approach is demonstrated in a numerical example involving a point-mass

model of the UH-60A twin-engine helicopter.

Nomenclature
Cp = power coefficient
Cr = thrust coefficient
C,, C, = horizontal and vertical components of thrust coefficient
Cy = mean profile drag coefficient of rotor blades
d = distance along runway
fe = equivalent flat plate or drag area
fc = ground effect factor
g = acceleration of gravity
h = helicopter altitude
Ig = rotor polar moment of inertia
K = weight factor control penalty term
King = induced-power factor
m = helicopter mass
Psro = all-engines-operatingnormal takeoff power
Pogr = maximum one engine inoperative power available
el = current power setting
Py = available shaft power
R = rotor radius
U.,U, = normalized flow components at the main rotor
u, = horizontal and vertical velocity components
u,,u, = normalized pseudocontrols
Vv = airspeed
Vross = takeoff safety speed
Vy = airspeed for best rate of climb
Xcro = total runway length in continued takeoff
Xgrro = total runway length in rejected takeoff
X = horizontal displacement

= thrust vector inclination angle
y = flight-path angle
n = power efficiency factor
v = normalized induced velocity
P = air density
c = rotor solidity ratio
T

= normalized time
Trail = normalized engine failure time
T; = normalized terminal time of phase i
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Tp engine power decay time constant
Q = rotor angular speed

0 = nominal rotor speed
Subscripts

max = maximum value
min = minimum value

I. Introduction

HE balanced field length (BFL) performance of a multi-engine
helicoptersustaininga failurein one enginedependson various
factors,includingambient conditions(such as wind and turbulence),
gross weight, and piloting techniques. To be able to deal safely with
the event of an inadvertent engine failure, Federal Aviation Ad-
ministration (FAA) regulations specify that transport helicopters
must be certified. Category-A certification, which applies to (large)
multi-engine helicopters, stipulates that helicopters should be able
to continue their flight with one engine inoperative (OEI).! Simi-
lar to fixed-wing aircraft, a pilot must continue the takeoff (CTO) if
engine failure occurs after the helicopterhas passed the critical deci-
sion point (CDP), whereas the takeoff needs to be rejected if the en-
gine fails early during the flight, before reaching the CDP. Whether
the CTO or the rejected takeoff (RTO) is critical in determining the
required field length depends on several factors, most notably the
specification of the CDP. In any case, a category-A certificated he-
licopter must be able to satisty OEI operation requirements within
the available runway field, for any given gross weight. A BFL is
obtained when both RTO and CTO require the same runway length.
Reference 2 presents optimal runway takeoff trajectories for a
fairly simple point-mass model, representativeof the UH-60A Black
Hawk helicopter. The main objective of Ref. 2 is to identify the
major parameters that influence runway takeoff operations. A flight
strategy is developedthat provides a properbalance among the three
important factors, namely, runway field length, payload capability,
and safety. Nonlinear optimal control problems are formulated in
Ref. 2 for both the CTO and RTO after a single engine failure, with
the aim to minimize the required field length under specified safety
constraints and for a given takeoff weight. Both formulations are
subject to maximum and minimum rotor speed constraints, along
with thrust magnitude and angle constraints. To selecta proper CDP,
the state variables at the point of engine failure are systematically
varied and used as the initial conditions in the optimal CTO and
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Fig. 1 Category-A helicopter runway takeoff procedure.

RTO trajectory calculations. Based on combined considerations of
CTO and RTO, suitable CDPs have been selected to achieve overall
minimum runway length.

In Ref. 2 optimization has been restricted to the OEI phase,
whereas the phase where all engines are still operating has been
based on a simple strategy. Following this strategy, a helicopter
would start the takeoff in-ground effect at 5 ft. The helicopter then
accelerateshorizontally at 0.2 g until V =V,. At Vj, the helicopter
starts climbing at a constant airspeed and a constant flight-path an-
gle y, (see Fig. 1). In the follow-on study reported by Zhao et al.,’
Zhao et al.? recognize that the nominal all-engines-operating (AEO)
flight path in takeoff plays a crucial role in shaping optimal OEI tra-
jectories and that further studies are needed to determine AEO flight
paths that are optimal for OEI flights. The present paper exactly ad-
dresses this issue of establishing the best possible AEO flight path
up to the CDP.

It is readily clear that the AEO trajectory represents an optimal
compromise between conflicting requirements in terms of energy
management, set by the CTO and RTO phases. To establish this op-
timal compromise solution, the AEO, CTO, and RTO flight phases
are optimized simultaneously,under the imposition of a field length
balancing constraint. More specifically, what we seek to do in this
study is to establish the optimal BFL performance as a function
of engine failure time. In addition, families of optimal (unbalanced)
RTO trajectories, parameterizedby the engine failure time, are com-
puted. Based on combined considerations of balanced and unbal-
anced RTO field length performance, a suitable CDP that provides
overall minimum runway length can be extracted. Moreover, the
optimal AEO flight path up to the CDP can then be established in
the process.

II. Helicopter Modeling

A. Equations of Motion

An augmented two-dimensional point-mass model based on
Ref. 3 has been used in the present study. This model is slightly
more refined than the model employed in Ref. 2 in the sense that
1) the response of the contingency power available is modeled as a
first-order lag, 2) a simple model for ground effect is included, and
3) the time derivatives of the original control variables (thrust vec-
tor components) are now used as the (augmented) control variables.
The equations of motion presented in Ref. 3 are repeated here in a
slightly more generic form, which also allows the representationof
the point-mass modeled helicopterin the AEO phase:

h=-w (1)
X =u 2)
mw =mg — C.p(QR)*nR* — Lpfow Ju> + w? 3)

mit = C,p(QR)*w R* — LpfouJud + w? )
[QQ =P, — (1/1)Cpp(Q2R)> 1 R? 5)
Py = (1/7,)(Pes = Py) 6)

C.=u, (7)

Co=u, ®)
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Fig. 2 Point-mass model: forces, speeds, and angles.

A Cartesianreference frame (see Fig. 2) has been used to formulate
the force balance equations (3) and (4). The horizontal and vertical
components of the thrust coefficient, C, and C,, can be readily
related to the thrust 7 and thrust inclination angle 8 through

C, =Cyrcosp 9)
C,=Crsinf (10)

where
Cr =T/p(QR)* 7 R? (11)

From Fig. 2, it also follows that airspeed and flight-path angle can

be evaluated as
V =+vu?+w? (12)
siny =w/V (13)

The rotorrotationaldynamicsin Eq. (5) follows from a simple power
balance. The required power coefficient Cp is obtained from the
following relation:

Cr =Cry/5Cr(Kina fo Vi + Uc) + g0cq (14)

where

0 __usinff —wcosf (15)

T ar/Ic

_ + i
U[:ucos[i w sin B (16)

QR/LC;

Equations (15) and (16) representthe two normalized velocity com-
ponents, perpendicularand parallel to the tip path plane (TPP), that
can be used to calculate the normalized rotor-induced velocity

V20 + (02 + 027 =1 (17)

Note that Eq. (17) is valid outside the vortex-ring state only. In
the vortex-ring state an empirical formula has been employed >3
However, in all examined examples, the helicopter stays out of the
vortex-ring state. Similar to Ref. 2, a Newton-Raphson scheme has
been used to solve Eq. (17).

The term f; in Eq. (14) accounts for the decrease in induced
velocity due to ground effect. To approximate the ground effect
in forward flight, a fairly simple model has been used in this study.
The modelis describedin some detailin Ref. 3. A Newton-Raphson
solver has been employed for the ground effect model equations as
well. Note that in the point-mass equations the center of gravity is
assumed to be located at the center of the rotor disk. However, the
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model for ground effect takes account of the rotor hub heightabove
the ground.

The dynamic response of the power available is modeled as a
first-orderlag in Eq. (6). The reference power P in Eq. (6) actually
depends on the flight phase.

In the AEO phase:

Pt = Papo = P5(0) (18a)
and in the OEI phase:
Prer = Por (18b)

Itis assumed here that the normal AEO takeoff power Pago and the
maximum OEI available power Pog; are constant (control) param-
eters.

Similar to Ref. 3, the time derivativesof C, and C,, ratherthan C,
and C, themselves, have been used as the control variables. To this
end, the pseudocontrolsu and u, have been introduced in Eqs. (7)
and (8). By resorting to these pseudocontrols,discontinuitiesin C,
and C, at the point of engine failure can be avoided.

In summary, the augmented point-mass dynamic model for
flight in a vertical plane is described by eight state variables,
h,x,u,w, Q, P, C,, and C,, which are governed by two control
variables, u, and u,, and two control parameters, Pygo and Pog;.
Another important parameter is the helicopter mass m. Unfortu-
nately, however, a parametric investigation involving the mass m
has not been completed at this stage. Therefore, results for only a
single (relatively low) helicopter mass will be presented here.

B. Operational Aspects

Before discussing the mathematical formulation of the BFL tra-
jectory optimization problem for category-A runway takeoff oper-
ations, it is instructive to first consider some operational aspects.
Notably, the requirements according to FAA Advisory circular AC-
29-2A! are reviewed to identify the appropriateconstraints that must
be included in the mathematical problem formulation.

Unlike category-B certified helicopters, category-A certified he-
licopters are allowed to fly over areas where no emergency landing
sites are available.For this reason, a distinctionis made between cer-
tification for vertical takeoff and landing (VTOL) operations at con-
fined areas and for short takeoff and landing (STOL) from airfields.
To be able to perform a safe landing after engine failure, certain
combinations of height and forward speed should be avoided. The
shape and size of those regions in the (V, h) space will be largely
determined by the earlier mentioned parameters related to ambient
conditions,gross weight, and piloting procedures. VTOL operations
are more critical because of the unsafe low-speed region and may
involve considerable weight restrictions for a given helicopter. For
this reason it is more practical, not to mention more economical, to
make use of STOL procedures whenever possible.

Some typical flight paths for category-A are schematically shown
in Fig. 3. If an engine fails before reaching the CDP, the helicopter
must land immediately (Fig. 3b). In a safe rejected landing, the he-
licopter must achieve reasonable touchdown speeds, which implies
that constraints on both the vertical and horizontal speed compo-
nents at touchdown must be included in the trajectory optimization
formulation. Because at touchdown the helicopters may still have a
forward speed, an additional ground run is required to decelerate to
a complete stop. In this study, it is assumed that along the runway
the helicopter decelerates at —0.2 g.

The contingency power ratings for category-A are defined in
terms of both the level and the duration. Typically, the OEI power
ratings include a 2.5- and a 30-min power rating. It is assumed that
the 2.5-min OEI power rating is 110% of the AEO maximum takeoff
power rating, whereas the 30-min OEI power rating is 105% of the
AEO maximum takeoff power rating.

When the engine fails once past the CDP, the takeoff must be
completed with the helicopter attaining a minimum altitude of 35 ft
and the takeoff safety speed (TOSS) Vross, which assures a mini-
mum climb rate of 100 ft/min. During the subsequent OEI climbout
phase, the helicopter must be able to satisfy the OEI inoperative
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Fig. 3 Typical runway takeoff profiles.

requirements with the remaining power available (Fig. 1). There are
actually two segments in the OEI climbout. From 35 ft to at least
100 ft, the helicopter must be able to maintain a minimum rate of
climb of 100 ft/min at Vyoss with the 2.5-min OEI power rating.
From 100 to 1000 ft/min, the helicopter must be able to accelerate
from Vross to the airspeed for best rate of climb Vy with the 30-min
OEI power rating. The numerical studies in Ref. 2 bear out that the
first segment is more restrictive, and as a consequence, the second
segment has been fully disregarded in the current study.

With respect to the selection of Viggss, it is important to realize
that ahelicopterrequiresless power at larger forward speeds, at least
below a certain limit. Consequently, Vross must be sufficiently high
for the helicopter to carry a certain payload in a steady OEI climb.
On the other hand, a larger Vross leads to a longer CTO runway
distance. In Ref. 2, the maximum weight in steady OEI climb has
been computed as a function of Vross. These results have been used
here to select an appropriate Vyoss.

The difference between Vcpp and Vioss has great influence on the
optimal trajectory for continued flight (Figs. 3¢ and 3d). Indeed, if
an engine fails at a low speed Vcpp, an altitude drop occurs during
the continued takeoff. For this reason a minimum altitude constraint
according to the requirement shown in Fig. 3d has been included in
the optimization formulation; in the CTO phase

h > %hcop (19)

The strategy for the AEO phase (from hover to engine failure)
that has been adopted in Ref. 2 was originally developed for heavily
loaded helicopters, that is, helicopters operating with such heavy
payloadsandin suchunfavorableconditionsthatthe availableexcess
power is only sufficient to perform a runway takeoff, not a vertical
takeoff.* In the employed strategy, preselected values for speed and
flight-path angle in the climb are employed which essentially fixes
the AEO trajectoryin the (V, h) space (Fig. 1). In the present study,
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the AEO phase is included in the optimization formulation, and the
resulting trajectory is, thus, shaped in the optimization process. It
has been assumed here that the helicopter starts from a hover in-
ground effect at 5 ft. First, the power required corresponding to
this hover condition is calculated. The ensuing AEO phase may
then be flown with the power setting at this particular level (no
power excess) or with a slightly increased power setting (power
excess). In the latter case, obviously it needs to be ensured that
the maximum AEO takeoff power rating is not exceeded. Without
power excess, altitude may actually drop when accelerating from
the hover condition (Fig. 3a). A minimum altitude constraint has,
therefore, been included in the AEO phase for safety reasons,

h > hmin (20)

In this study the minimum altitude A, has been fairly arbitrarily
set at 3 ft.

The aerodynamic and structural limitations of the rotor blades
results in constraints on the rotor angular speed, the rotor thrust,
and the thrust inclination angle:

Qmin <0< Qmax (21)
CTmin = CT = CTmax (22)
ﬂmin = ﬂ = ﬂmax (23)

For the AEO phase, a constant rotor rotational speed has been as-
sumed, which is simply arranged by setting in Eq. (21)

Onin = Onax =€ (24)
where €2 is the nominal rotor speed.

C. Physical Parameters UH-60A

In the numerical examples, a model of the Sikorsky UH-60A
Black Hawk helicopter has been employed.>*> This helicopter is
powered by two T700-GE-700 turboshaftengines. Some important
parameters of this helicopter are presented in the Appendix, along
with some parameters used in the trajectory optimization scenarios.
In the numerical examples that will be presented only a single mass,
corresponding to a relatively lightly loaded helicopter, has been
considered (m =17,7151b). The available power Pago has been set
at 2243 hp, which is some 10% above the level required for hover
in-groundeffectat 5 ft, but well within the maximum takeoffrating.

III. Optimal Control Formulation

A. Variable Scaling

Zhao and Chen>?® make use of a scaling procedure for the state
and control variables and time and control parameters, to avoid con-
vergence problemsin the numerical resolutionof the trajectory opti-
mization problems. The same scaling of variables has been adopted
in the optimization algorithm employed in the present study. How-
ever, because in the presentation of the results the original physical
variables are used, a further description of the scaling procedure is
omitted here. However, there is one exception that relates to nor-
malized time. Normalized time is defined here as

T = (£/100)¢, 0, =27 rad/s (25)
The primary reason for presenting the results in the form of normal-
ized time histories is that normalized engine failure time 7y has
been used as a control parameter.

B. Multiphase Optimization

As mentioned earlier, to date trajectory optimizationstudies have
primarily aimed at optimizing continued and rejected flight sep-
arately, while considering a fixed procedure for the AEO phase,
uncoupled from the subsequent phases. Probably the most impor-
tant reason for synthesizing trajectories from separate flight phases
is that the optimization of combined AEO and OEI trajectoriesis of
considerable mathematical and numerical complexity.
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Fig. 4 Multiphase scheme for optimal BFL calculation.

One complication is represented by the event of engine failure;
it causes a discontinuity in the dynamic system equations describ-
ing the motion of the helicopter. Another complicationis that some
flight phases are highly constrained, in particular the AEO phase.
Indeed, the AEO trajectory should be feasible and practical, while
staying outside the restricted region in the (V, h) space. The in-
terior point- and path-type constraints that need to be introduced
to overcome the described complications are rather difficult to in-
corporate in the optimization process, especially when a so-called
indirect optimization method® is used, such as the sequential gradi-
ent restoration algorithm employed by Zhao and Chen.??

In this study a direct optimization technique has been used that is
capable of dealing with the drawbacks already mentioned. In con-
trast to the indirect approach, a direct approach does not involve
solving multipoint boundary-value problems. Rather, the problem
of choosing a control function is reduced to choosing a finite set of
parameters. Nonlinear programming is then used to select the pa-
rameters to minimize a defined objective function. One of the most
effective direct numerical methods for path-constrained trajectory
optimization is the collocation method.®” Collocation involves dis-
cretization of the trajectory dynamics. The discrete dynamics along
with the path constraints are then treated as algebraicinequalitiesto
be satisfied by the nonlinearprogram (implicitintegration). More re-
cently,anotherdirectmethod thatuses implicitintegrationof the sys-
tem equations has been proposed, namely, differential inclusion 8
Reference 6 recommends that generally preference should be given
to the collocation method because the resulting nonlinear programs
are typically smaller and easier to solve.

In this study the numerical results have been obtained using
both the collocation and differential inclusion techniques. More
specifically, the recently developed EZopt (data available online
at http://www.ama-inc.com) package has been used to perform the
optimal trajectory calculations. This package, which implements
both of the described direct optimization methods, proved to be
ideally suited for this problem, especially because it turned out to
be quite capable in dealing with multiphase optimization problems.
In EZopt, discontinuities are possible at phase transitions, as well
as different dynamical systems for each phase. These two features
are indeed essential for the BFL optimization procedure proposed
herein.

Figure 4 shows the multiphase representationused in the present
study. The optimization problem is split up into four sequential
stages, respectively, the AEO phase, the CTO phase, the airborne
phase of the RTO, and the ground run of the RTO. The phase transi-
tions are such that the state variables are continuous, however, with
one major exception. The initial state of the airborne RTO phase
is directly connected to the terminal state of the AEO phase, and
not to terminal state of the CTO. In other words, the CTO and RTO
phaseshave the same initial condition. This implies that, althoughin
the optimizationalgorithm the four stages are implemented sequen-
tially in time, the CTO and RTO phases are actually concurrently



602 VISSER

optimized (the system equations are not explicit functions of time).
In the numerical examples, the results will, therefore,be shown with
the RTO phase directly connected to the AEO phase.

As far as the time points delimiting the various stages are con-
cerned,only the initialnormalizedtime 7, and the normalizedengine
failure time g,y (= 7)) have an a priori specified fixed value; the re-
maining staging times are parameters that can be freely optimized.

C. Boundary and Staging Conditions

For the four flight phases defined in Fig. 4, appropriate boundary
and staging conditions need to be specified. In general, itis assumed
that phase i terminates at the normalized time 7;” and begins at time
7" |. The staging conditions are constraints that specify how the
state at the end of a particular phase corresponds to the initial state
in a subsequentphase. In the multiphase optimization, the following

staging conditions have been enforced:

(7)) =x(v7) (26)
x(%) =x() 27
x(z) =x(z7) (28)

The remaining boundary conditions are specified for each of the
four phases separately.

1. AEO Phase
The eight initial conditions for the AEO phase are

h(ty) =5 ft (29)
x(1) =0 (30)
u(tg) =w(z) =0 (31
Q1) = Q (32)
Py(79) = Paro (33)
(1) =w(m) =0 (34)

Note that Egs. (34) represent an implicit specification for the thrust
coefficients correspondingto the hover condition.

2. CTO Phase
The terminal constraints for the CTO phase are

h(zy) =351t (35)
—w(z;') =100 ft/min (36)
u(z;) Zuross = Vioss(m) (37)
i(zy) =vw(r;) =0 (38)
Q) =0 (39)

The last three conditions are enforced to ensure a steady-state flight
at the end of the CTO.

3. RTO Airborne Phase
The constraints for the RTO phase at touchdown are

h (13_) =0 (40)
w(z7) < W (41)
w(t5) <t (42)

In contrast to Ref. 2, the safe touchdown constraints (41) and (42)
are enforced here as inequalities.

4. RTO Ground Phase

The ground phase of the RTO has been integrated in the multi-
phase optimization process in an analytical form. More specifically,
the stopping distance is solved analyticallyin terms of speed, based
on the following trivial boundary condition:

u (14_) =0 (43)

D. BFL Performance Index

For the multiphase optimization problem as described, the objec-
tive is to minimize the BFL. Total runway length for the complete
CTO (including the AEO phase) is simply obtained from

Xcro =x(13) (44)

Similarly, the overall runway length for the complete RTO (up to a
full stop) is given by

Xao = 2(57) =x(5) + () fode @)

Note that the final term in Eq. (45) represents the stopping distance
after touchdown. The performance index can be based on either
Eq. (44) or Eq. (45), provided that the following field length bal-
ancing constraint is taken into account,

Xcro = Xrro (46)

It is recalled that the derivatives of the thrust coefficients are em-
ployed as the control variables. The use of these pseudocontrols
variables allows the thrust coefficients to be continuous across the
phase boundaries and results in a smoother control, partially sim-
ulating pilot response delays. No constraints are imposed on the
pseudocontrols. However, to avoid unacceptably large control in-
puts and to smooth the solution further, a quadratic control penalty
term has been added to the runway length optimization criterion.
The selected performanceindex is, thus, a weighted combination of
the form

3
J = Xgro + K/ (u? +u?)de 47)

70

where K is a weight factor. The weight parameter has been selected
such that the overall takeoff distanceincreases by about 10% relative
to the case where K has been set to zero (in a typical scenario).

A perhapsmore appropriateobjectivein the optimizationproblem
is to minimize the overall runway length needed, rather than to
achieve a BFL. Mathematically, this problem can be stated as

min max(Xcro, Xrro) (48)

However, the results in this study demonstrate that this particular
objective is achieved by the BFL when both CTO and RTO are
equally influential.

E. Unbalanced RTO Flight

The calculation of optimal unbalanced RTO trajectories is much
simpler than the optimal BFL calculations because the AEO and
CTO flight phases can be completely disregarded. To allow a com-
parison with optimal balanced RTO trajectories, the initial condition
for an unbalanced RTO trajectory is simply the state at engine fail-
ure that occurs in a corresponding optimal BFL trajectory. Except
for the field length balancing constraint given by Eq. (46), the ter-
minal boundary conditions for the balanced and unbalanced RTO
trajectories are also the same.
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IV. Numerical Results

A. CDP Selection

To establish the best possible CDP, the characteristicsof optimal
BFL trajectories have been examined for a range of values for the
normalizedengine failure time. Figure 5 shows the optimal BFL as a
function of the normalized engine failure time for the example heli-
copter.Note thatin Fig. 5 the optimal BFL resultsare labeled as RTO
(balanced). Figure 5 also presents the results for the corresponding
unbalanced optimal RTO trajectories.

Inspection of Fig. 5 shows that initially the BFL dramatically
decreases with engine failure time, but that at some point no more
progress is made. This observed behavior is fairly easily under-
stood. When an engine fails early during the takeoff, the CTO phase
is critical in the BFL computations. As the failure time increases,
the required field length for CTO decreases, while the field length
required for RTO increases. At about 7p; =2.4, the RTO and CTO
flight are equally influential in determining the BFL. This is re-
flected by the required field lengths for balanced and unbalanced
RTO trajectories being the same at this point. For engine failure
times in excess of 7y =2.4, the RTO performance is the decisive
factor. However, the resulting RTO trajectories will not be signifi-
cantly different from the trajectory found for r =2.4. Indeed, any
(normalized) time in excess of T =2.4 during which both engines
remain operative will be simply absorbed in vertical flight, to avoid
an increase in BFL due to reduced RTO field length performance.

Figure 6 servestoillustratethe precedingobservationsby present-
ing some more detailed BFL trajectory results for several selected
values of the normalized engine failure time. The three selected val-
ues for engine failure time represent cases of a fairly early failure
(g, = 1.5) and a late failure (zp,; = 3.5), relative to the nominal case
(Trai1 =2.4).

Figure 6a shows the time histories for speed, whereas Fig. 6b
presents the corresponding altitude profiles for the AEO and RTO
phases. If an engine fails early during the flight, only a modest
energylevel hasbeen attainedby the helicopterat the pointof engine
failure, and as a result, both the speed and altitude are relatively low
at this point. Figure 6¢ reveals that due to the power deficiency that
results from such an early engine failure, the helicopter is unable
to accelerate without trading potential for kinetic energy. Clearly,
such a situation is bound to lead to a relatively large CTO distance
and, due to the field length balancing constraint, also to a large
RTO distance. It can be observed in Fig. 6¢ that the ground phase
of the RTO is actually quite large. This is a direct consequence of
the touchdown in the balanced RTO trajectory taking place at the
maximum permissible horizontal speed of 40 ft/s (Fig. 6a).

Note that the RTO trajectories that come out of the BFL calcu-
lations for engine failure times below 7g,; =2.4 have no practical
significance from an operational perspective. Indeed, it is readily
clear from Fig. 5 that in the case of early failure a significantly
lower RTO distance can be obtained if a strategy is adopted that is
based on unbalanced optimal RTO trajectories. The true purpose of
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Fig. 7 Several optimal RTO trajectories emanating from the optimal
AEOQ trajectory.



604 VISSER

the optimal BFL calculations is to establish the best possible AEO
trajectory for a given engine failure time. For early engine failure
times, the BFL calculations focus on the optimization of the more
restrictive CTO phase, while the RTO requirements assure that the
AEO phase ends outside the restricted region in the (V, &) space.
Figure 6b also demonstrates that increasing the engine failure
time from 7p,; =2.4 to 3.5 does not result in a reduction in the re-
quired takeoff distance. As a matter of fact, for large engine failure

80 T T T T ]
70 | AEQ ——
L RTO ------
60 |- e CTO -:----- -
850 Z 4
B 40 - .
5 30 | \\ —
20 |- N -
.
10 . E
0 1 1 1 ] 1
0 1 2 3 4 5 6
Normalized flight time
50 T T T T T
45 (- AEQ ——
RTQ ------
“or 35t CTO == |
/7
E 30 =
© R
E 25 - AN 4
=z 20 \\ E
15 |- \\\ -
\\
10 . -
5 \\\ -
N\,
0 1 1 ] 1 N
0 1 2 3 4 5 6
Normalized flight time
1.1 T T T T T
9 7 CTO —--e---
& 105 / X -
% ! “\
Q A \
§ / “\
5 [ e — \ -
g \. \\
T v kY
E \_ \\
2 0-95 B ‘.\ \\\\ T
' .
.\
\
0.9 1 1 1 1 1
0 1 2 3 4 5 6
Normalized flight time
0.01 T T T T T
AEQ ——
RTO ------
0.008 |- .'."\‘ CT.O . -
.-vg (\_/_\ '/ P R
£ 0006 \-\” e E
% .
Q
o
2 0.004 - -
=
'_
0.002 -
0 1 1 1 1
0 2 3 4 5

Normalized flight time

times the resulting RTO trajectoriesare not all that different. Indeed,
the main difference is found in the AEO phase. A close inspection
of Fig. 6b makes clear that in the case of a late failure, the helicopter
climbs vertically from its initial position. A climb is indeed possible
because of the available excess power in the AEO phase.

With respect to the selection of the optimal CDP and the optimal
AEO trajectory leading to it, it is readily clear from the preceding
observations that the optimal BFL trajectory corresponding to
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Fig. 8 Optimal BFL solution for normalized engine failure time 7¢,; = 2.4.
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T = 2.4 offers the best possible candidate. Figure 7 shows this
particular optimal BFL trajectory, along with several optimal un-
balanced RTO trajectories that originate at some point on the opti-
mized AEO trajectory. Note that the optimal RTO trajectoriesshown
correspond to the curve labeled RTO (unbalanced) in Fig. 5. From
Fig. 7 it can be concluded that the required field length will never
exceed the indicated BFL distance, regardless of the point of engine
failure.

The main result of the optimization process is that we have now
established the best possible takeoff procedure (with respect to the
required field length) up to the CDP. Indeed, when the simple AEO
strategy of Ref. 2 is replaced with the AEO phase of the optimal
BFL solution, a significantreductionin field length can be obtained.
The terminal state vector of the optimized AEO trajectory shown in
Fig. 7, which will serve as the CDP, includes the following compo-
nents:

VCDP = 47.65 ft/s hCDp =22.28 ft

Ycpp = 3.57 deg Xcpp = 200.98 ft (49)

It is interesting to actually quantify how much runway reduction
can be obtained relative to the simple AEO procedure of Ref. 2,
assuming that the CDP is the same. The required runway length for
the horizontal acceleration followed by a steady-state climb up to
the CDP can be computed from?

V2 h -5
CDP CDP

(50)
04¢g tan ycpp

dCDP =

Substitution of the terminal values listed in Eq. (49) into the right-
hand side of Eq. (50) yields dcpp =453 ft, which is more than twice
the value xcpp found for the optimized BFL.

The optimal AEO performance strongly depends on helicopter
gross weight. It is likely that the benefit of optimization will reduce
as the gross weight increases.

B. Optimal BFL Trajectory Characteristics

In this section the selected BFL trajectory will be presented
in somewhat more detail. Figure 8 presents the time histories for
eight state variables for the optimal BFL trajectory corresponding
to g, =2.4.Results are presented for each of the three flight phases,
namely, AEO, CTO, and RTO. In the time history forrequiredpower,
the curve labeled OEI applies to both the RTO and CTO phase.
Clearly visible in the time history for the available power is the
decay that occurs after engine failure. It is recalled that in the cur-
rent study it is assumed that the OEI power rating is 110% of the
maximum AEO takeoff power rating.

One of the most striking features that can be observed in Fig. 8
is the near-linear behavior of airspeed as a function of normalized
flight time for the three respective phases. Note that the touchdown
in the RTO trajectory takes place at a relatively low speed (well
below the maximum permissible horizontal speed). As a result, the
ground phase of the RTO (not shown here) is of a limited extent
only. During the final phase of the airborne RTO phase, the rotor
energy that has been stored in the initial phase of the RTO is used to
develop thrust. This is reflected by the rotor speed first increasing
before it subsequently drops to a low value in the RTO trajectory.
The thrust vector is tilted backward in the RTO flare. Although the
flight-path angle takes on fairly low values in the terminal phase of
the RTO, the rate of descent does not violate the imposed boundary
constraintat touchdown (w ., =3 ft/s), simply becausethe airspeed
is low in the final phase.

The resulting CTO trajectory does not exhibit any peculiarities
either. It is recalled that the terminal boundary conditions for the
CTO phase are such that the helicopter reaches the 35-ft screen

height in steady state. The screen height is actually reached in a
relatively short flight time. In the CTO phase, rotational energy is
traded for potential and kinetic energy, resulting in a drop in rotor
speed. The horizontal speed that is reached at the 35-ft screen height
exactly matches uross, but the climb rate at that point significantly
exceeds the minimum requirement of 100 ft/min. By selecting a
different value for urogss, the climb rate during the OEI climbout
can perhaps be reduced, but this requires further investigation.

V. Conclusions

A BFL trajectory optimization approach using a collocation or
differential inclusion technique in conjunction with a multiphase
procedure has been developed for multi-engine helicopters sustain-
ing a failure in one engine. The essential feature of the proposed
approach is that it allows the computation of complete trajecto-
ries rather than trajectories synthesized from separate flight phases.
Combined considerationsof balanced and unbalancedrejected take-
off give insight in the selection of the CDP. The main outcome of
the overall BFL optimization process is the optimal AEO takeoff
trajectory up to the CDP.

The presentstudy is limited in scope in the sense that an extensive
parametric investigation has not taken place yet. Important param-
eters that need to be examined in future research include takeoff
weight, takeoff power rating, initial hover height, and the takeoff
safety speed. The current concept is likely to provide a useful ba-
sis for conducting such a parametric study. The developed multi-
phase optimization concept is flexible in the sense that alternative
optimization criteria, for example, takeoff weight, additional con-
straints, for example, a specified field length, or model refinements,
for example, a rigid-body model with three degrees of freedom, can
be readily introduced.

Appendix: UH-60A Model Parameters

The following presents an overview of some important pa-
rameters of the Sikorsky UH-60A Blackhawk helicopter, along
with some parameters used in the optimization. The maximum
takeoff power is 3086 shaft hp. The considered mass is m =
17,715 1b. The most important rotor parameters are R =26.83 ft,
o =0.0821, £y =27 rad/s, and I =7060 slug ft>. The thrust con-
straints used are Cr,,, =0.001 and Cy,,, =0.01846. Other values
of parameters used in the optimizations include f, =30 2, ¢y =
0.012, n=085, Kind =1.15, Wnax =3 ft/S, U nax =40 ft/S, VTOSS =
65 ft/s, Pmax =10 deg, Bmin =—10 deg, Qnax/ 20 =107%, Quin/
QO =91%, PAEO =2243 hp, and POEI =1650 hp
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